Variational Bayesian GMM for speech recognition

نویسندگان

  • Fabio Valente
  • Christian Wellekens
چکیده

In this paper, we explore the potentialities of Variational Bayesian (VB) learning for speech recognition problems. VB methods deal in a more rigorous way with model selection and are a generalization of MAP learning. VB training for Gaussian Mixture Models is less affected than EM-ML training by overfitting and singular solutions. We compare two types of Variational Bayesian Gaussian Mixture Models (VBGMM) with classical EM-ML GMM in a phoneme recognition task on the TIMIT database. VB learning performs better than EM-ML learning and is less affected by the initial model guess.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Approaches in Speech Recognition

This paper focuses on applications of Bayesian approaches to speech recognition. Bayesian approaches have been widely studied in statistics and machine learning fields, and one of the advantages of the Bayesian approaches is to improve generalization ability compared to maximum likelihood approaches. The effectiveness for speech recognition is shown experimentally in speaker adaptation tasks by...

متن کامل

Effects of Bayesian predictive classification using variational Bayesian posteriors for sparse training data in speech recognition

We introduce a robust classification method using Bayesian predictive distribution (Bayesian predictive classification, referred to as BPC) into speech recognition. We and others have recently proposed a total Bayesian framework for speech recognition, Variational Bayesian Estimation and Clustering for speech recognition (VBEC). VBEC includes an analytical derivation of approximate posterior di...

متن کامل

Application of Variational Bayesian Approach to Speech Recognition

In this paper, we propose a Bayesian framework, which constructs shared-state triphone HMMs based on a variational Bayesian approach, and recognizes speech based on the Bayesian prediction classification; variational Bayesian estimation and clustering for speech recognition (VBEC). An appropriate model structure with high recognition performance can be found within a VBEC framework. Unlike conv...

متن کامل

Forensic speaker recognition based on a Bayesian framework and Gaussian mixture modelling (GMM)

The goal of this paper is to establish a scientifically founded methodology for forensic automatic speaker recognition. The interpretation of recorded speech as evidence in the forensic context presents particular challenges. The means proposed in the paper for dealing with them is through Bayesian inference. This leads to the formulation of a likelihood ratio measure of evidence which weighs t...

متن کامل

Speaker recognition based on variational Bayesian method

This paper presents a speaker identification system based on Gaussian Mixture Models (GMM) using the variational Bayesian method. Maximum Likelihood (ML) and Maximum A Posterior (MAP) are well-known methods for estimating GMM parameters. However, the overtraining problem occurs with insufficient data due to a point estimate of model parameters. The Bayesian approach estimates a posterior distri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003